Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

admit(x, nil) → nil
admit(x, .(u, .(v, .(w, z)))) → cond(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z)))))
cond(true, y) → y

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

admit(x, nil) → nil
admit(x, .(u, .(v, .(w, z)))) → cond(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z)))))
cond(true, y) → y

Q is empty.

The TRS is overlay and locally confluent. By [19] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

admit(x, nil) → nil
admit(x, .(u, .(v, .(w, z)))) → cond(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z)))))
cond(true, y) → y

The set Q consists of the following terms:

admit(x0, nil)
admit(x0, .(x1, .(x2, .(w, x3))))
cond(true, x0)


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ADMIT(x, .(u, .(v, .(w, z)))) → COND(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z)))))
ADMIT(x, .(u, .(v, .(w, z)))) → ADMIT(carry(x, u, v), z)

The TRS R consists of the following rules:

admit(x, nil) → nil
admit(x, .(u, .(v, .(w, z)))) → cond(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z)))))
cond(true, y) → y

The set Q consists of the following terms:

admit(x0, nil)
admit(x0, .(x1, .(x2, .(w, x3))))
cond(true, x0)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ADMIT(x, .(u, .(v, .(w, z)))) → COND(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z)))))
ADMIT(x, .(u, .(v, .(w, z)))) → ADMIT(carry(x, u, v), z)

The TRS R consists of the following rules:

admit(x, nil) → nil
admit(x, .(u, .(v, .(w, z)))) → cond(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z)))))
cond(true, y) → y

The set Q consists of the following terms:

admit(x0, nil)
admit(x0, .(x1, .(x2, .(w, x3))))
cond(true, x0)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
QDP
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

ADMIT(x, .(u, .(v, .(w, z)))) → ADMIT(carry(x, u, v), z)

The TRS R consists of the following rules:

admit(x, nil) → nil
admit(x, .(u, .(v, .(w, z)))) → cond(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z)))))
cond(true, y) → y

The set Q consists of the following terms:

admit(x0, nil)
admit(x0, .(x1, .(x2, .(w, x3))))
cond(true, x0)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
QDP
                  ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

ADMIT(x, .(u, .(v, .(w, z)))) → ADMIT(carry(x, u, v), z)

R is empty.
The set Q consists of the following terms:

admit(x0, nil)
admit(x0, .(x1, .(x2, .(w, x3))))
cond(true, x0)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

admit(x0, nil)
admit(x0, .(x1, .(x2, .(w, x3))))
cond(true, x0)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
QDP
                      ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

ADMIT(x, .(u, .(v, .(w, z)))) → ADMIT(carry(x, u, v), z)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: